metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aqua(1,10-phenanthroline- $\kappa N, N'$)bis(2.3.4.5-tetrafluorobenzoato- κO)copper(II) 1,2,3,4-tetrafluorobenzene solvate

Junshan Sun,^a* Chunlin Ma,^b Guofang He^a and Jikun Li^a

^aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^bDepartment of Chemistry, Liaocheng University, 252059 Liaocheng, Shandong, People's Republic of China

Correspondence e-mail: xiangyz_2008@163.com

Received 3 November 2007; accepted 7 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.015 Å; disorder in main residue; R factor = 0.076; wR factor = 0.241; data-to-parameter ratio = 11.4.

In the title compound, $[Cu(C_{13}H_6F_4O_2)_2(C_{12}H_8N_2)(H_2O)]$. C₆H₂F₄, each Cu^{II} ion is coordinated by two N atoms [Cu-N = 1.985 (6) and 2.052 (6) Å] from a 1,10-phenanthroline ligand, and three O atoms [Cu-O = 1.922(6)-2.243 (5) Å] from two 2,3,4,5-tetrafluorobenzoate ligands and a water molecule, respectively, in a distorted squarepyramidal geometry. Intermolecular O-H···O hydrogen bonds link the complex molecules into chains parallel to the a axis. The crystal packing exhibits weak $C-H \cdots O$ hydrogen bonds and $\pi - \pi$ interactions, as evidenced by a short distance of 3.717 (13) A between the centroids of the benzene rings of neighbouring solvent molecules. One F atom is disordered over two positions; the site occupancy factors are 0.57 and 0.43.

Related literature

For the crystal structures of related organotin(IV) carboxylate complexes, see: Ma et al. (2006).

Experimental

Crystal data

λ Ν

а h

С

$[Cu(C_{13}H_6F_4O_2)_2(C_{12}H_8N_2)-$	$\beta = 99.226 \ (2)^{\circ}$
$(H_2O)] \cdot C_6H_2F_4$	$V = 3011.6 (4) \text{ Å}^3$
$M_r = 797.99$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 6.8150 (8) Å	$\mu = 0.85 \text{ mm}^{-1}$
b = 28.9810 (16) Å	T = 298 (2) K
c = 15.44800 (8) Å	$0.37 \times 0.15 \times 0.14 \text{ mm}$

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.745, T_{\max} = 0.891$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.076$	
$wR(F^2) = 0.241$	
S = 1.03	
5137 reflections	
450 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H5A\cdots O2^{i}$	0.85	2.05	2.776 (8)	143
$O5-H5B\cdots O4^{i}$	0.85	2.08	2.831 (7)	147
C25−H25···O2 ⁱⁱ	0.93	2.53	3.221 (10)	131
$C26-H26\cdots O4^{ii}$	0.93	2.44	3.329 (10)	159

14410 measured reflections

 $R_{\rm int} = 0.067$

594 restraints

 $\Delta \rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

5137 independent reflections

2352 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y + 1, -z + 2.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant. No. 20271025) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2347).

References

Ma, C. L., Sun, J. S., Zhang, R. F. & Wang, D. Q. (2006). Inorg. Chim. Acta, 359, 4179-4190.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m3048 [doi:10.1107/S1600536807056887]

Aqua(1,10-phenanthroline-*KN*,*N*')bis(2,3,4,5-tetrafluorobenzoato-*KO*)copper(II) 1,2,3,4-tetrafluorobenzene solvate

J. Sun, C. Ma, G. He and J. Li

Comment

Metal complexes with carboxylates are among the most investigated complexes in the field of coordination chemistry. Nevertheless, the crystal structures of metal complexes with fluorated carboxylic ligands have rarely been reported. In our work, we have reported the organotin(IV) carboxylates complexes with this ligand (Ma *et al.*, 2006). In continuation of this study, we present here the crystal structure of the title compound.

In the title compound (Fig. 1), the Cu^{II} ion exhibits a five-coordinated square-pyramidal environment formed by three O atoms from two carboxylic ligands (Cu1—O1 1.922 (6) Å, Cu1—O3 1.948 (5) Å) and one water molecule (Cu1—O5 2.243 (5) Å), and two N atoms (Cu1—N1 1.985 (6) Å, Cu1—N2 2.052 (6) Å) from 1,10-phenanthroline ligand. Two N atoms and two O atoms form the basal plane and atom O5 occupies the apical site.

The intermolecular O—H···O hydrogen bonds (Table 1) link the main molecules related by translation along *a* axis into chains. The crystal packing exhibits also weak C—H···O hydrogen bonds (Table 1) and π ··· π interactions, proved by short distance of 3.717 (13) Å between the centroids of benzene rings of neighbouring solvent molecules.

Experimental

The reaction was carried out by the solvothermal method. 2,3,4,5-tetrafluorobenzoic acid(0.386 g,2 mmol) and cupric acetate(0.199 g, 1 mmol) and 1,10-phenanthroline(0.180 g, 1 mmol) were added to the airtight vessel with 20 ml water. The resulting green solution was filtered. The filtrate was placed for sevaral days yielding green block-shaped crystals.

The yield is 81% and elemental analysis: calc. for $C_{32}H_{14}CuF_{12}N_2O_5$: C 48.16, H 1.77, N 3.51; found: C 48.45, H 3.39, N 3.22. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Refinement

All H atoms were geometrically positioned (C—H 0.93 Å, O—H 0.82 Å) and refined as riding, with U_{iso} (H)=1.2Ueq of the parent atom. Atom F1 was treated as statistically disordered byteen two positions with the refined occupancies of 0.572 (7) and 0.428 (7), respectively.

Figures

Fig. 1. View of the title compound with the atomic numbering and 30% probability displacement ellipsoids. H atoms omitted for clarity.

 $Aqua (1, 10-phenanthroline - \kappa N, N') bis (2, 3, 4, 5-tetra fluorobenzoato - \kappa O) copper (II) 1, 2, 3, 4-tetra fluorobenzene$ solvate

Crystal data

$F_{000} = 1588$
$D_{\rm x} = 1.760 {\rm ~Mg} {\rm ~m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 2282 reflections
$\theta = 2.7 - 25.3^{\circ}$
$\mu = 0.85 \text{ mm}^{-1}$
T = 298 (2) K
Block, green
$0.37 \times 0.15 \times 0.14 \text{ mm}$

Data collection

CCD area detector diffractometer	5137 independent reflections
Radiation source: fine-focus sealed tube	2352 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.067$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 6$
$T_{\min} = 0.745, T_{\max} = 0.891$	$k = -26 \rightarrow 34$
14410 measured reflections	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.076$	H-atom parameters constrained
$wR(F^2) = 0.241$	$w = 1/[\sigma^2(F_o^2) + (0.1138P)^2 + 2.0328P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
5137 reflections	$\Delta \rho_{max} = 0.77 \text{ e } \text{\AA}^{-3}$
450 parameters	$\Delta \rho_{min} = -0.68 \text{ e } \text{\AA}^{-3}$
594 restraints	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0025 (8)

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cu1	0.78922 (12)	0.40017 (3)	0.82641 (6)	0.0500 (4)	
F1	1.3110 (12)	0.4545 (3)	0.6146 (6)	0.092 (2)	0.572 (7)
F1'	0.6297 (16)	0.4035 (4)	0.5423 (8)	0.092 (2)	0.428 (7)
F2	1.3111 (7)	0.46696 (19)	0.4451 (3)	0.0910 (16)	
F3	0.9875 (8)	0.45009 (19)	0.3259 (3)	0.0962 (17)	
F4	0.6523 (8)	0.4203 (2)	0.3754 (3)	0.0969 (17)	
F5	1.4666 (8)	0.2934 (2)	0.9151 (5)	0.136 (3)	
F6	1.5600 (9)	0.2049 (2)	0.9159 (6)	0.160 (3)	
F7	1.2794 (10)	0.14033 (18)	0.8663 (5)	0.146 (3)	
F8	0.8983 (9)	0.16610 (18)	0.8170 (5)	0.129 (2)	
F9	0.5918 (14)	0.2803 (3)	0.2011 (7)	0.188 (2)	
F10	0.2495 (13)	0.3180 (2)	0.1405 (6)	0.173 (3)	
F11	-0.0500 (14)	0.2650 (3)	0.0694 (7)	0.188 (2)	
F12	-0.0109 (15)	0.1768 (3)	0.0570 (8)	0.225 (5)	
N1	0.7820 (8)	0.40042 (19)	0.9543 (4)	0.0516 (15)	
N2	0.7463 (8)	0.4693 (2)	0.8454 (4)	0.0520 (16)	
01	0.7985 (8)	0.40807 (18)	0.7036 (4)	0.0688 (15)	
02	1.1109 (8)	0.4300 (2)	0.7359 (4)	0.0768 (17)	
O3	0.8838 (8)	0.33670 (17)	0.8284 (3)	0.0617 (14)	
O4	1.1788 (8)	0.35633 (18)	0.9038 (4)	0.0701 (16)	
05	0.4629 (7)	0.38446 (19)	0.7994 (4)	0.0707 (16)	
H5A	0.3958	0.4073	0.7765	0.085*	
H5B	0.4205	0.3765	0.8460	0.085*	
C1	0.9584 (12)	0.4212 (3)	0.6839 (5)	0.0525 (17)	
C2	0.9670 (11)	0.4291 (2)	0.5874 (5)	0.0507 (17)	
C3	1.1382 (11)	0.4449 (2)	0.5596 (5)	0.0561 (18)	
H3	1.2503	0.4513	0.6006	0.067*	0.428 (7)
C4	1.1439 (12)	0.4510 (3)	0.4727 (6)	0.0600 (19)	
C5	0.9808 (13)	0.4434 (3)	0.4121 (5)	0.063 (2)	
C6	0.8114 (12)	0.4276 (3)	0.4375 (6)	0.0628 (19)	
C7	0.8020 (11)	0.4210 (3)	0.5250 (5)	0.0573 (18)	
H7	0.6841	0.4111	0.5421	0.069*	0.572 (7)
C8	1.0611 (12)	0.3282 (3)	0.8664 (6)	0.0578 (19)	

C9	1.1242 (11)	0.2780 (3)	0.8655 (6)	0.065 (2)
C10	1.3182 (13)	0.2639 (3)	0.8900 (7)	0.076 (2)
C11	1.3644 (14)	0.2171 (3)	0.8885 (7)	0.088 (3)
C12	1.2302 (15)	0.1857 (3)	0.8678 (7)	0.084 (2)
C13	1.0365 (15)	0.1984 (3)	0.8409 (7)	0.086 (2)
C14	0.9808 (14)	0.2456 (3)	0.8398 (6)	0.077 (2)
H14	0.8493	0.2544	0.8218	0.093*
C15	0.7900 (11)	0.3644 (3)	1.0091 (5)	0.0626 (19)
H15	0.7997	0.3347	0.9872	0.075*
C16	0.7840 (12)	0.3702 (3)	1.0981 (6)	0.072 (2)
H16	0.7858	0.3441	1.1334	0.086*
C17	0.7758 (12)	0.4119 (3)	1.1349 (6)	0.068 (2)
H17	0.7750	0.4151	1.1947	0.082*
C18	0.7686 (10)	0.4502 (3)	1.0802 (5)	0.0543 (17)
C19	0.7699 (10)	0.4428 (3)	0.9901 (5)	0.0529 (17)
C20	0.7507 (10)	0.4802 (3)	0.9295 (6)	0.0531 (17)
C21	0.7379 (10)	0.5253 (3)	0.9603 (6)	0.0590 (18)
C22	0.7192 (11)	0.5600 (3)	0.8973 (7)	0.067 (2)
H22	0.7150	0.5907	0.9142	0.081*
C23	0.7073 (12)	0.5493 (3)	0.8130 (7)	0.071 (2)
H23	0.6892	0.5724	0.7708	0.086*
C24	0.7222 (11)	0.5028 (3)	0.7875 (6)	0.064 (2)
H24	0.7148	0.4957	0.7284	0.077*
C25	0.7577 (11)	0.4964 (3)	1.1095 (6)	0.066 (2)
H25	0.7590	0.5020	1.1689	0.079*
C26	0.7457 (10)	0.5319 (3)	1.0539 (6)	0.0634 (19)
H26	0.7423	0.5617	1.0758	0.076*
C27	0.451 (3)	0.2499 (7)	0.1628 (13)	0.188 (2)
C28	0.278 (3)	0.2712 (5)	0.1346 (12)	0.173 (3)
C29	0.132 (3)	0.2465 (7)	0.1038 (13)	0.188 (2)
C30	0.151 (3)	0.1996 (5)	0.0959 (11)	0.163 (4)
C31	0.328 (3)	0.1800 (5)	0.1200 (11)	0.165 (4)
H31	0.3432	0.1487	0.1101	0.198*
C32	0.486 (2)	0.2046 (5)	0.1583 (11)	0.162 (4)
H32	0.6083	0.1913	0.1796	0.195*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0465 (6)	0.0506 (6)	0.0529 (6)	0.0004 (4)	0.0082 (4)	-0.0032 (4)
F1	0.061 (4)	0.131 (6)	0.082 (5)	-0.011 (4)	0.007 (4)	0.000 (5)
F1'	0.061 (4)	0.131 (6)	0.082 (5)	-0.011 (4)	0.007 (4)	0.000 (5)
F2	0.085 (3)	0.111 (4)	0.086 (4)	-0.003 (3)	0.040 (3)	0.016 (3)
F3	0.109 (4)	0.128 (5)	0.057 (3)	0.007 (3)	0.028 (3)	0.008 (3)
F4	0.085 (4)	0.138 (5)	0.059 (3)	-0.011 (3)	-0.014 (3)	-0.002 (3)
F5	0.062 (3)	0.079 (4)	0.264 (9)	-0.010 (3)	0.015 (4)	0.010 (4)
F6	0.082 (4)	0.106 (5)	0.293 (10)	0.041 (4)	0.035 (5)	0.038 (5)
F7	0.157 (6)	0.056 (3)	0.238 (9)	0.043 (4)	0.070 (6)	0.008 (4)

F8	0.123 (5)	0.053 (3)	0.201 (7)	-0.014 (3)	-0.005 (5)	-0.028 (4)
F9	0.184 (5)	0.148 (4)	0.213 (5)	-0.018 (4)	-0.025 (4)	0.040 (4)
F10	0.218 (6)	0.085 (4)	0.200 (6)	0.006 (4)	-0.014 (5)	0.017 (4)
F11	0.184 (5)	0.148 (4)	0.213 (5)	-0.018 (4)	-0.025 (4)	0.040 (4)
F12	0.206 (9)	0.136 (7)	0.302 (14)	-0.052 (6)	-0.055 (9)	0.038 (7)
N1	0.040 (3)	0.035 (3)	0.079 (5)	0.006 (3)	0.007 (3)	0.001 (3)
N2	0.037 (3)	0.059 (4)	0.061 (4)	-0.002 (3)	0.012 (3)	0.017 (3)
01	0.053 (3)	0.082 (4)	0.075 (4)	-0.005 (3)	0.020 (3)	-0.007 (3)
02	0.066 (4)	0.108 (5)	0.052 (4)	0.007 (3)	-0.006 (3)	-0.005 (3)
O3	0.059 (3)	0.062 (3)	0.065 (4)	-0.001 (3)	0.013 (3)	-0.005 (3)
O4	0.060 (3)	0.053 (3)	0.097 (5)	-0.008 (3)	0.011 (3)	-0.009 (3)
05	0.044 (3)	0.084 (4)	0.086 (4)	-0.004 (3)	0.014 (3)	0.001 (3)
C1	0.052 (4)	0.058 (4)	0.047 (4)	0.011 (3)	0.006 (4)	0.002 (3)
C2	0.051 (4)	0.056 (4)	0.047 (4)	0.003 (3)	0.011 (3)	0.000 (3)
C3	0.050 (4)	0.058 (4)	0.059 (4)	0.005 (3)	0.006 (4)	-0.001 (4)
C4	0.056 (4)	0.064 (4)	0.063 (5)	0.001 (4)	0.020 (4)	0.002 (4)
C5	0.073 (5)	0.076 (5)	0.042 (4)	0.000 (4)	0.014 (4)	0.000 (4)
C6	0.063 (4)	0.071 (5)	0.054 (4)	-0.005 (4)	0.008 (4)	-0.001 (4)
C7	0.053 (4)	0.070 (4)	0.051 (4)	-0.007 (4)	0.016 (4)	-0.001 (4)
C8	0.055 (4)	0.048 (4)	0.075 (5)	-0.007 (4)	0.021 (4)	0.001 (4)
C9	0.050 (4)	0.051 (4)	0.097 (6)	-0.001 (3)	0.023 (4)	0.000 (4)
C10	0.059 (5)	0.058 (4)	0.112 (6)	0.001 (4)	0.016 (4)	0.001 (4)
C11	0.070 (5)	0.076 (5)	0.120 (7)	0.014 (5)	0.021 (5)	0.009 (5)
C12	0.083 (5)	0.049 (5)	0.121 (6)	0.006 (4)	0.025 (5)	0.004 (5)
C13	0.084 (5)	0.059 (5)	0.113 (6)	-0.002 (5)	0.008 (5)	-0.004 (5)
C14	0.075 (5)	0.053 (4)	0.104 (6)	-0.004 (4)	0.012 (4)	-0.012 (4)
C15	0.056 (4)	0.062 (4)	0.070 (5)	0.006 (4)	0.012 (4)	-0.004 (4)
C16	0.062 (4)	0.089 (5)	0.063 (5)	0.001 (4)	0.010 (4)	0.017 (4)
C17	0.058 (4)	0.086 (5)	0.059 (4)	-0.004 (4)	0.001 (4)	-0.007 (4)
C18	0.033 (3)	0.068 (4)	0.061 (4)	-0.004 (3)	0.007 (3)	-0.012 (4)
C19	0.032 (3)	0.061 (4)	0.065 (4)	-0.005 (3)	0.005 (3)	-0.008 (3)
C20	0.033 (3)	0.055 (4)	0.074 (4)	-0.003 (3)	0.017 (3)	-0.013 (3)
C21	0.033 (3)	0.061 (4)	0.084 (5)	-0.008 (3)	0.013 (3)	-0.015 (4)
C22	0.048 (4)	0.055 (4)	0.100 (5)	0.002 (3)	0.015 (4)	-0.001 (4)
C23	0.055 (4)	0.061 (5)	0.101 (6)	-0.001 (4)	0.021 (4)	0.012 (4)
C24	0.056 (4)	0.063 (4)	0.076 (5)	0.001 (4)	0.019 (4)	0.008 (4)
C25	0.042 (4)	0.081 (5)	0.073 (5)	-0.003 (4)	0.007 (4)	-0.020 (4)
C26	0.039 (4)	0.065 (4)	0.085 (5)	-0.004 (3)	0.008 (4)	-0.027 (4)
C27	0.184 (5)	0.148 (4)	0.213 (5)	-0.018 (4)	-0.025 (4)	0.040 (4)
C28	0.218 (6)	0.085 (4)	0.200 (6)	0.006 (4)	-0.014 (5)	0.017 (4)
C29	0.184 (5)	0.148 (4)	0.213 (5)	-0.018 (4)	-0.025 (4)	0.040 (4)
C30	0.174 (9)	0.105 (7)	0.195 (9)	-0.017 (7)	-0.017 (8)	0.043 (7)
C31	0.179 (9)	0.105 (7)	0.195 (9)	0.000(7)	-0.021 (8)	0.040 (7)
C32	0.170 (8)	0.110 (7)	0.191 (9)	0.004 (7)	-0.021 (8)	0.043 (7)
Geometric par	rameters (Å, °)					
Cu1—O1		1.922 (6)	C8—	-C9	1.5	17 (10)
Cu1—O3		1.948 (5)	С9—	-C14	1.3	67 (11)

Cu1—N1	1.985 (6)	C9—C10	1.378 (11)
Cu1—N2	2.052 (6)	C10-C11	1.393 (12)
Cu1—O5	2.243 (5)	C11—C12	1.294 (12)
F1—C3	1.366 (11)	C12—C13	1.369 (12)
F1'—C7	1.345 (13)	C13—C14	1.421 (11)
F2—C4	1.360 (8)	C14—H14	0.9300
F3—C5	1.354 (8)	C15—C16	1.391 (11)
F4—C6	1.345 (9)	C15—H15	0.9300
F5—C10	1.332 (9)	C16—C17	1.341 (11)
F6—C11	1.379 (10)	C16—H16	0.9300
F7—C12	1.358 (9)	C17—C18	1.391 (11)
F8—C13	1.336 (10)	C17—H17	0.9300
F9—C27	1.368 (17)	C18—C19	1.410 (10)
F10—C28	1.373 (15)	C18—C25	1.418 (10)
F11—C29	1.378 (18)	C19—C20	1.425 (10)
F12—C30	1.343 (17)	C20—C21	1.399 (10)
N1—C15	1.340 (9)	C21—C22	1.390 (11)
N1—C19	1.354 (9)	C21—C26	1.450 (11)
N2—C24	1.312 (9)	C22—C23	1.329 (11)
N2—C20	1.333 (9)	С22—Н22	0.9300
O1—C1	1.238 (9)	C23—C24	1.412 (11)
O2—C1	1.234 (9)	С23—Н23	0.9300
O3—C8	1.280 (9)	C24—H24	0.9300
O4—C8	1.222 (9)	C25—C26	1.335 (11)
O5—H5A	0.8501	С25—Н25	0.9300
O5—H5B	0.8499	С26—Н26	0.9300
C1—C2	1.520 (10)	C27—C32	1.34 (2)
С2—С7	1.378 (10)	C27—C28	1.34 (2)
С2—С3	1.384 (10)	C28—C29	1.25 (2)
С3—С4	1.361 (10)	C29—C30	1.37 (2)
С3—Н3	0.9300	C30—C31	1.334 (19)
C4—C5	1.352 (11)	C31—C32	1.344 (18)
C5—C6	1.357 (11)	C31—H31	0.9300
С6—С7	1.377 (10)	С32—Н32	0.9300
С7—Н7	0.9300		
O1—Cu1—O3	93.7 (2)	F7—C12—C13	118.9 (9)
O1—Cu1—N1	172.9 (2)	F8—C13—C12	119.9 (8)
O3—Cu1—N1	92.8 (2)	F8—C13—C14	119.7 (8)
O1—Cu1—N2	93.0 (2)	C12—C13—C14	120.3 (9)
O3—Cu1—N2	166.9 (2)	C9—C14—C13	118.8 (9)
N1—Cu1—N2	80.0 (2)	С9—С14—Н14	120.6
O1—Cu1—O5	91.7 (2)	C13—C14—H14	120.6
O3—Cu1—O5	97.3 (2)	N1-C15-C16	121.6 (8)
N1—Cu1—O5	90.2 (2)	N1—C15—H15	119.2
N2—Cu1—O5	93.7 (2)	C16—C15—H15	119.2
C15—N1—C19	116.6 (7)	C17—C16—C15	122.5 (8)
C15—N1—Cu1	128.4 (5)	C17—C16—H16	118.7
C19—N1—Cu1	115.0 (5)	C15—C16—H16	118.7
C24—N2—C20	117.9 (7)	C16—C17—C18	117.5 (8)

C24—N2—Cu1	129.0 (6)	C16—C17—H17	121.3
C20—N2—Cu1	113.0 (5)	C18—C17—H17	121.3
C1—O1—Cu1	116.7 (5)	C17—C18—C19	118.2 (7)
C8—O3—Cu1	118.3 (5)	C17—C18—C25	123.8 (8)
Cu1—O5—H5A	111.7	C19—C18—C25	117.9 (8)
Cu1—O5—H5B	111.0	N1-C19-C18	123.5 (7)
H5A—O5—H5B	109.3	N1-C19-C20	115.3 (7)
O2—C1—O1	125.9 (8)	C18—C19—C20	121.2 (7)
O2—C1—C2	116.5 (7)	N2-C20-C21	124.2 (8)
O1—C1—C2	117.5 (7)	N2-C20-C19	116.4 (7)
C7—C2—C3	118.2 (7)	C21—C20—C19	119.5 (8)
C7—C2—C1	120.3 (7)	C22—C21—C20	116.1 (8)
C3—C2—C1	121.4 (7)	C22—C21—C26	126.0 (8)
C4—C3—F1	115.4 (8)	C20—C21—C26	117.9 (8)
C4—C3—C2	120.5 (8)	C23—C22—C21	120.1 (8)
F1—C3—C2	124.0 (8)	C23—C22—H22	119.9
С4—С3—Н3	119.7	C21—C22—H22	119.9
F1—C3—H3	4.4	C22—C23—C24	120.0 (9)
С2—С3—Н3	119.7	С22—С23—Н23	120.0
C5—C4—F2	118.4 (7)	C24—C23—H23	120.0
C5—C4—C3	120.8 (7)	N2—C24—C23	121.5 (9)
F2—C4—C3	120.8 (8)	N2—C24—H24	119.2
C4—C5—F3	120.3 (7)	C23—C24—H24	119.2
C4—C5—C6	119.8 (8)	C26—C25—C18	121.5 (8)
F3—C5—C6	119.8 (8)	C26—C25—H25	119.3
F4—C6—C5	118.3 (8)	C18—C25—H25	119.3
F4—C6—C7	121.2 (7)	C25—C26—C21	121.9 (8)
C5—C6—C7	120.5 (8)	C25—C26—H26	119.0
F1'—C7—C6	115.2 (9)	C21—C26—H26	119.0
F1'—C7—C2	124.5 (8)	C32—C27—C28	126.3 (19)
C6—C7—C2	120.1 (7)	C32—C27—F9	122.4 (18)
F1'—C7—H7	6.2	C28—C27—F9	111.3 (19)
С6—С7—Н7	120.0	C29—C28—C27	117.3 (18)
С2—С7—Н7	120.0	C29-C28-F10	119 (2)
O4—C8—O3	126.1 (7)	C27-C28-F10	124.0 (19)
O4—C8—C9	118.6 (8)	C28—C29—C30	121 (2)
O3—C8—C9	115.4 (7)	C28—C29—F11	122.2 (19)
C14—C9—C10	119.1 (8)	C30—C29—F11	116.1 (17)
C14—C9—C8	118.1 (7)	C31—C30—F12	123.8 (16)
С10—С9—С8	122.8 (7)	C31—C30—C29	119.3 (18)
F5—C10—C9	122.7 (7)	F12—C30—C29	116.6 (17)
F5-C10-C11	117.7 (8)	C30—C31—C32	121.4 (17)
C9—C10—C11	119.5 (8)	С30—С31—Н31	119.3
C12—C11—F6	120.3 (9)	С32—С31—Н31	119.3
C12—C11—C10	122.5 (9)	C27—C32—C31	113.9 (17)
F6-C11-C10	117.1 (9)	С27—С32—Н32	123.1
C11—C12—F7	121.3 (9)	С31—С32—Н32	123.1
C11—C12—C13	119.7 (9)		
01—Cu1—N1—C15	-172.2 (16)	C9—C10—C11—F6	-178.3 (9)

O3—Cu1—N1—C15	-15.0 (6)	F6-C11-C12-F7	-4.8 (17)
N2—Cu1—N1—C15	176.1 (6)	C10-C11-C12-F7	179.6 (10)
O5—Cu1—N1—C15	82.3 (6)	F6-C11-C12-C13	179.8 (10)
O1—Cu1—N1—C19	7(2)	C10-C11-C12-C13	4.2 (17)
O3—Cu1—N1—C19	164.1 (5)	C11—C12—C13—F8	178.0 (10)
N2—Cu1—N1—C19	-4.8 (4)	F7—C12—C13—F8	2.5 (16)
O5—Cu1—N1—C19	-98.6 (5)	C11—C12—C13—C14	-3.1 (17)
O1—Cu1—N2—C24	4.0 (6)	F7—C12—C13—C14	-178.6 (9)
O3—Cu1—N2—C24	124.9 (10)	C10-C9-C14-C13	1.3 (14)
N1—Cu1—N2—C24	-177.4 (6)	C8—C9—C14—C13	-178.3 (8)
O5—Cu1—N2—C24	-87.8 (6)	F8—C13—C14—C9	179.2 (9)
O1—Cu1—N2—C20	-173.7 (5)	C12—C13—C14—C9	0.3 (15)
O3—Cu1—N2—C20	-52.8 (11)	C19—N1—C15—C16	0.6 (10)
N1—Cu1—N2—C20	4.9 (4)	Cu1—N1—C15—C16	179.7 (5)
O5—Cu1—N2—C20	94.4 (5)	N1—C15—C16—C17	-2.0 (12)
O3—Cu1—O1—C1	-87.6 (5)	C15—C16—C17—C18	1.5 (12)
N1—Cu1—O1—C1	70 (2)	C16—C17—C18—C19	0.1 (11)
N2— $Cu1$ — $O1$ — $C1$	81.1 (5)	C16—C17—C18—C25	179.4 (7)
05-Cu1-O1-C1	174.9 (5)	C15-N1-C19-C18	1.0 (10)
01—Cu1—O3—C8	107.7 (5)	Cu1—N1—C19—C18	-178.2(5)
N1—Cu1—O3—C8	-69.6 (6)	C15 - N1 - C19 - C20	-176.7(6)
N2—Cu1—O3—C8	-13.1(13)	Cu1—N1—C19—C20	4.1 (7)
O5—Cu1—O3—C8	-160.1(5)	C17—C18—C19—N1	-1.4(10)
Cu1 - O1 - C1 - O2	-0.6(10)	C25-C18-C19-N1	179.2 (6)
Cu1—O1—C1—C2	-178.2(5)	C17—C18—C19—C20	176.2 (6)
02-C1-C2-C7	-178.7(7)	C25-C18-C19-C20	-3.1(10)
01 - C1 - C2 - C7	-0.9 (11)	C24—N2—C20—C21	-2.2(10)
02-C1-C2-C3	0.6 (10)	Cu1—N2—C20—C21	175.8 (5)
01 - C1 - C2 - C3	178.4 (7)	$C_{24} = N_{2} = C_{20} = C_{19}$	177.8 (6)
C7-C2-C3-C4	-1.7(11)	Cu1—N2—C20—C19	-4.2 (7)
C1—C2—C3—C4	179.0 (7)	N1-C19-C20-N2	0.2 (9)
C7-C2-C3-F1	179.5 (8)	C18 - C19 - C20 - N2	-177.6 (6)
C1 - C2 - C3 - F1	0.2(12)	N1-C19-C20-C21	-179.8(6)
F1-C3-C4-C5	-178.8(8)	$C_{18} - C_{19} - C_{20} - C_{21}$	2.4 (10)
$C_2 - C_3 - C_4 - C_5$	2 3 (12)	N_{2} C_{20} C_{21} C_{22}	0.1 (10)
$F_1 - C_3 - C_4 - F_2$	-1.8(11)	$C_{19} = C_{20} = C_{21} = C_{22}$	-179.9(6)
$C_2 - C_3 - C_4 - F_2$	179 4 (7)	N_{2} C_{20} C_{21} C_{26}	-179.7(6)
$F_2 - C_4 - C_5 - F_3$	22(12)	$C_{19} = C_{20} = C_{21} = C_{26}$	03(9)
C_{3} C_{4} C_{5} F_{3}	179 3 (7)	$C_{20} = C_{21} = C_{22} = C_{23}$	2.4(11)
$F_2 - C_4 - C_5 - C_6$	-179.8(7)	$C_{26} = C_{21} = C_{22} = C_{23}$	-177.8(7)
C_{3} C_{4} C_{5} C_{6}	-2.7(12)	$C_{21} - C_{22} - C_{23} - C_{24}$	-2.7(12)
C4-C5-C6-F4	-1797(7)	$C_{20} = N_{2} = C_{24} = C_{23}$	1.9(10)
F3—C5—C6—F4	-1.7(12)	Cu1 - N2 - C24 - C23	-175.8(5)
C4-C5-C6-C7	2.5 (13)	$C_{22} = C_{23} = C_{24} = N_2$	0.5 (12)
F3—C5—C6—C7	-179.5 (7)	C17—C18—C25—C26	-178.2 (7)
F4—C6—C7—F1'	5.0 (13)	C19-C18-C25-C26	1.1 (11)
C5—C6—C7—F1'	-177.3 (9)	C18—C25—C26—C21	1.6 (11)
F4—C6—C7—C2	-179.7 (7)	C22—C21—C26—C25	177.9 (7)
C5—C6—C7—C2	-2.0 (12)	C20—C21—C26—C25	-2.3 (10)
	× /		< - /

C3—C2—C7—F1'	176.5 (9)	C32—C27—C28—C29	3(4)
C1—C2—C7—F1'	-4.2 (13)	F9—C27—C28—C29	-175.1 (18)
C3—C2—C7—C6	1.5 (11)	C32-C27-C28-F10	-179.7 (16)
C1—C2—C7—C6	-179.2 (7)	F9—C27—C28—F10	2(3)
Cu1—O3—C8—O4	1.4 (11)	C27—C28—C29—C30	-3(3)
Cu1—O3—C8—C9	179.8 (5)	F10-C28-C29-C30	179.8 (16)
O4—C8—C9—C14	166.9 (8)	C27—C28—C29—F11	-177.1 (17)
O3—C8—C9—C14	-11.6 (12)	F10-C28-C29-F11	5(3)
O4—C8—C9—C10	-12.7 (13)	C28—C29—C30—C31	-1(3)
O3—C8—C9—C10	168.8 (8)	F11-C29-C30-C31	173.7 (17)
C14-C9-C10-F5	179.3 (9)	C28—C29—C30—F12	-176 (2)
C8—C9—C10—F5	-1.1 (15)	F11—C29—C30—F12	-1(3)
C14-C9-C10-C11	-0.4 (15)	F12-C30-C31-C32	179.6 (16)
C8—C9—C10—C11	179.2 (9)	C29—C30—C31—C32	5(3)
F5-C10-C11-C12	177.8 (10)	C28—C27—C32—C31	1(3)
C9—C10—C11—C12	-2.5 (17)	F9—C27—C32—C31	178.7 (17)
F5-C10-C11-F6	2.1 (14)	C30—C31—C32—C27	-5(3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot\!A$
O5—H5A···O2 ⁱ	0.85	2.05	2.776 (8)	143
O5—H5B···O4 ⁱ	0.85	2.08	2.831 (7)	147
C25—H25···O2 ⁱⁱ	0.93	2.53	3.221 (10)	131
C26—H26···O4 ⁱⁱ	0.93	2.44	3.329 (10)	159
~				

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*+1, -*z*+2.

Fig. 1

